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Phonon scattering by localized equilibria of nonlinear nearest-neighbor chains
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~Received 17 July 1997!

We study scattering of phonons by localized equilibria, for example, localized defects on nonlinear chains.
We show thatperfecttransmission occurs atk50 at the threshold for creation of localized modes and there
exists a characteristic transition involving perfect transmission of long-wavelength phonons near the threshold.
The theory is illustrated for the stationary case of a discrete kink on a translationally invariant Hamiltonian
nearest neighbor chain, which is then generalized to any symmetric localized defects. The implications for
discrete breathers are also discussed.@S1063-651X~97!50811-7#

PACS number~s!: 03.20.1i, 63.20.Pw, 63.20.Ry
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Recently, there has been an upsurge of research activ
on localized dynamics on nonlinear lattices, in particular,
a class of spatially discrete, nonintegrable, translationally
variant systems on lattices@1#. It has been shown that in
suitable circumstances they have spatially localized tim
periodic solutions, known as ‘‘discrete breathers~DB!’’ @2#,
the discrete analogue of breathers in continuous system

Recently it was numerically found@3# that some of the
Floquet modes of the linearized problem about a disc
breather are also spatially localized, which arelocalized
modes on localized modes(LMs). The spectral study of the
LMs and their creation thresholds provides a systematic w
to study some important aspects of DB dynamics such
quasi-periodiclike dynamics after finite energy perturbatio
to a DB @4,5#, and the pinning mode and movability of a D
@6#, etc.

In this Rapid Communication, we study consequences
LMs for the scattering of phonons bydiscretelocalized ob-
jects by focusing on a simpler problem of a stationary def
and discussing its implications for DB scattering. We sh
that the existence of the thresholds for creation of LMs
manifested in the phonon scattering with localized objects
a perfect transmission atk50 at the LM thresholds and
dramatic change from a ‘‘reflecting’’ state to a perfec
transmitting state for long-wavelength phonons as the thre
old is crossed. The DB-phonon scattering has been pr
ously studied numerically to yield strong wave-vector dep
dence @4# and the existence of perfect transmission@7#,
which together with our results provides strong implicatio
for heat flux in long molecules, for example, a mechani
for energy trapping between two localized objects or prev
tion of the heat flux penetration into certain areas of
chain@4,8#. The theory is illustrated with numerics for loca
ized equilibria on a translationally invariant nearest neigh
chain with a~discrete! kink in the uncoupled limit, where
properties of LMs and their consequences for scattering
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be perturbatively analyzed for a wide range of potenti
with the help of a natural tuning parameter. However, it c
be naturally extended to any localized objects that are s
metric under spatial reflection and a DB with time-period
dynamics by considering truncation of Fourier modes.

Consider a Hamiltonian for the translationally invarian
discrete Klein-Gordon chain with one degree-of-freedom
site and nearest neighbor coupling

H~x!5(
n

F1

2
ẋn

21V~xn!1«u~xn112xn!G , ~1!

whereV has at least two nondegenerate local minima,x* ,
with V9(x* )5v0

2.0, andu8(0)51,u9(0)51. For example,

we takeu(x)5 1
2 x2 and study either thef4 Klein-Gordon

model with the double well potential,V(x)5x4/42x2/2,
with minima atx* 561, or the sine-Gordon model with th
cosine potential,V(x)512cos(x), with minima x* 52pn,
wheren is an integer.

We start with a stationary solution of

ẍn1V8~xn!5«@xn1122xn1xn21#, ~2!

which is translation invariant except for a localized defe
for example, a(discrete) kinkdefined in the uncoupled limi
(«50) by xn521(n<0),xn511(n>1) for the double
well potential and xn52pn(n<0),xn52p(n11)(n>1)
for the cosine potential. By the implicit function theorem
such an equilibrium has a unique continuationx(«) for small
«, called alocalized equilibrium (LE), which is exponentially
localized in space.

The linearized equation around the LE is given by

j̈52Lj, ~Lj!n5Anjn2«~jn1122jn1jn21!, ~3!

whereAn5V9(xn) is time independent. Among eigenmod
of L we are interested in localized modes of the fo
jn5lneivt (ulu,1) with a frequencyv and a decay expo
nentl satisfying

v0
22v25«~l2211/l!. ~4!

ra-
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The frequency of the LM, which lies outside the phon
band, is determined by a matching condition for a bound
solution.

In the case of the kink, perturbative calculations for eq
libria for small« show thatx0 andx1 move byO(«) and the
rest by at mostO(«2) with an exponential decay asunu→`.
Therefore, the simplest LM is given by anidealized kink, a
first order approximation of the kink without exponenti
tails; An5v0

2(nÞ0,1), andA15A05v0
22K«, whereK.0

is called thedetuning parameter. The frequencies and deca
exponents for the symmetric and asymmetric modes
given by @9#

vS
25v0

22
K2

11K
«, lS5

1

K11
, ~5!

vA
25v0

22
~K22!2

K21
«, lA5

1

K21
.

For localization,ulS,Au,1, which gives two thresholds fo
creation of LMs out of the bottom edge of the phonon ba
K50 for the symmetric LM andK52 for the antisymmetric
LM. Therefore, if 0<K<2, there is a symmetric LM and n
antisymmetric LM. ForK.2, there exists both a symmetr
LM and an antisymmetric LM. Similarly forK,0, we get
LMs emerging from the top edge of the phonon band.

For a kink for the double well potential,K;61O(«),
and, therefore, both a symmetric and an antisymmetric
exist in the uncoupled limit. These LMs persist under co
tinuation for the full problem since the correction to th
spectrum is at mostO(«2), which is confirmed by numerica
continuation of the spectrum ofL in «. In the case of the
cosine potential, however,V-50 at the potential minima
andK;2p2«, and, therefore, for small« only a symmetric
LM exists, which also persists for the full problem. The fa
thatK;« for the cosine potential allows a natural control
the detuning parameter by tuning the coupling strength«.
Numerical calculations of the spectrum for the cosine pot
tial chain with 64 sites in fact shows that an antisymme
LM is created at a critical value of«'0.2620.27, far away
from the perturbative regime.

The existence of creation thresholds for LMs leads to s
nificant consequences for scattering properties of phon
Consider a scattering setup with a phonon incident on a
tionary localized object. Suppose that asymptotic solution
either end of the chain are of the form

jn;n→2`eikn1re2 ikn, jn;n→`teikn, ~6!

where t and r are transmission and reflection amplitude
respectively. Then after some algebra with transfer matr
@10#, we get

T5utu254 sin2k/D~k!, ~7!

where

D~k!5@~M112M22!cosk1M122M21#
2

1~M111M22!
2sin2k. ~8!

HereMi , j , i , j 51,2 are matrix elements of
d

-

re

;

-

t

-
c

-
s.
a-
at

,
s

M5)̀
`

Mn , Mn5F0 1

21 En
G , ~9!

where En5(An2v2)/«52 cosk2Kn and detuning param
etersKn5(v0

22An)/«. Note that unlessD50, T vanishes
quadratically ink in the limit k→0,p, as in the case of one
static diagonal defect@11#. The numerical implementation o
our scheme for a finite chain involves only determination
the LE by Newton-Raphson method and repeated ma
multiplications that can be performed very fast and e
ciently.

As the simplest example, consider scattering of phon
by an idealized kink, whereE05E15E52cosk2K and
EnÞ0,152 cosk. Then we get

D~k![DK~k!

5~K22 cosk!2~2 sin2k1K cosk!2

1@~2 cosk2K !222#2sin2k. ~10!

A simple calculation yields that the maximum ofT for a
double well potential withK;6 is about 0.0035, so that th
kink is almost opaque to phonons for the entire range ofk for
a double well potential. On the other hand, for the cos
potential withK;«, a straighforward perturbative estima
shows that in the uncoupled limit the kink is almost perfec
transmitting (u12Tu,«) for phonons except in the sma
neighborhood ofk50,p of sizeA«, which is confirmed by
numerical computation of transmission coefficients as
function of k, as in Fig. 1 for a kink~with exponential tails!
of the double well potential and the cosine potential w
«50.01.

WhenD(k) is zero, there is a possibility of nonzero tran
mission atk50 or k5p. We consider thek50 limit only
since the other case withk5p can be analyzed similarly fo
LMs on the top of the phonon bands. For an idealized k
DK(k) vanishes atK50 and K52, which are, in fact,
thresholds for creation of symmetric and antisymmet
LMs, respectively. Moreover, simple algebra shows that
the thresholdK52 the transmission atk50 becomesper-
fect, a dramatic deviation from typical scattering behavio
of static diagonal defects. Moreover ifK,2 there exists a
perfect transmission (T51) at kp5cos21 (K/2) and if K.2

FIG. 1. Transmission coefficient as a function ofk for a kink for
the double well potential and the cosine potential with«50.01.
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there is no perfect transmission but a maximu
Tmax54/@41(K224)K2# at km5cos21 (2/K), which de-
creases from 1 asK moves away from the threshold. Th
characteristic change in transmission near the LM thresh
is in fact observed for a kink~with exponential tails! for the
cosine potential near the antisymmetric LM threshold
«'0.2620.27 as in Fig. 2.

Our approach is very general and can be extended to
neighborhood of any LM threshold of any localized defe
which issymmetricunder spatial reflection. First, a necessa
condition for nonzero transmission atk50 is thatD(0)50,
which leads to

d[@M112M221M122M21#k5050. ~11!

At the LM thresholds, the band-edge solution at the bott
of the phonon band,jn

0[jn(k50), with boundary condition
jn>N

0 51 for some largeN is given by jn
05a0n1b0 for

n<N. This band-edge solution must be bounded, so that
slopea05j2N

0 2j2N21
0 5d must vanish. Therefore only a

the LM threshold, we get nonzero transmission atk50.
In fact, at the threshold, the transmission atk50 becomes

perfectand we get the characteristic change in transmiss
discussed before for a kink. For localized objects with sy
metry under spatial reflection,M is antisymmetric, that is
M121M2150. This together with detM51 yields after
some algebra a simplified form forT for the symmetric lo-
calized objects:

T5
1

11F~k!
, ~12!

where

F~k!5
~M112M2212M12cosk!2

4 sin2k
. ~13!

We getperfecttransmission whenF(k)50; that is, if

M112M2212M12cosk50 ~14!

has a solution fork. Note that the parameterd in Eq. ~11!
measures deviation from the LM threshold. SinceM is even
in k, for smallk andd Eq. ~14! becomesd1ck2'0, where

FIG. 2. Characteristic change in transmission near the
threshold for a kink for the cosine potential.
ld
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c5@(]2/]k2) (M112M221M122M21)2M12#k50 (cÞ0
in general!. If cd,0, there is a perfect transmission
kp'A2d/c. Note that the breaking of spatial symmetry
localized objects leads to nonperfect transmission. Ifcd.0,
we solve for the maximum transmission and obtain a pea
transmission atkm'Ad/c with a maximumTk5km

'12ucud.
For an idealized kink near the antisymmetric LM thresho
K52, c'22,0 andd'2(K22), which leads to predic-
tions consistent with previous analysis of the idealized k
and numerical computations for a kink.

We emphasize that thresholding behavior of LMs has a
been found in a DB for a one-dimensional nearest neigh
chain with the double well potential, for example, with
frequencyvb50.8v0 @9#, where in the uncoupled limit no
LMs exist and a symmetric LM and an asymmetric LM a
created at finite coupling,«S'0.07 and«A'0.1, respec-
tively. Our analysis of scattering can be naturally extended
the DB with time-periodic functions with an appropriate e
largement of the dimension of transfer matrices to acco
for truncated Fourier modes. Preliminary numerical eviden
for a DB with vb50.8v0 shows that in the case of elast
scattering the DB is almost opaque for weak coupling but
transmission is dramatically enhanced near the LM thre
olds showing a characteristic change in transmission sim
to the case of the LE~see Fig. 3!. This explains why perfect
transmission of phonons through a DB was observed fo
very small wave vector forvb50.8323 and«50.1 by
Cretegnyet al. @7#.

In conclusion, we have studied thresholds of LMs for
class of symmetric localized defects, in particular, a discr
kink on a Klein-Gordon chain and their connection with ph
non scattering. We found that the transmission atk50 be-
comes perfect at the LM threshold with characteristic cha
involving perfect transmission for long-wavelength phono
in the neighborhood of the threshold. The explicit connect
between creation thresholds for LMs and phonon scatte
provides ways to investigate properties of LMs through sc
tering experiments. For example, by studying the ph
shifts inT, the total number of LMs could be enumerated
in Levinson’s theorem@7,12,13#. It would be interesting to
solve inelastic scattering problems in connecti

FIG. 3. Transmission coefficient as a function ofk for a discrete
breather of a Klein-Gordon chain with double well potential f
various values of«.
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with experiments on LMs. The results on phonon-scatter
may also present clues to understand and control heat flu
long molecules, for example, energy trapping and heat p
etration prevention into some areas of chain@8,4#.

Our approach can be extended to a wide class of local
defects, static or time periodic, on a chain. Much of o
results on scattering is expected to hold for a broad clas
Hamiltonian chains outside the realm of applications of
transfer matrix method and the discrete Sturm-Liouv
theory. It would be interesting to understand LMs of tim
y
v

nc
g
in
n-

d
r
of
e

-

periodic DBs and their connection to DB-phonon scatter
with in the discrete nonlinear Schro¨dinger equation on one
dimension and the Fermi-Pasta-Ulam chain. The deta
analysis of DB-phonon scattering will be the subject of o
going investigations.
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