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Phonon scattering by localized equilibria of nonlinear nearest-neighbor chains
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We study scattering of phonons by localized equilibria, for example, localized defects on nonlinear chains.
We show thafperfecttransmission occurs &=0 at the threshold for creation of localized modes and there
exists a characteristic transition involving perfect transmission of long-wavelength phonons near the threshold.
The theory is illustrated for the stationary case of a discrete kink on a translationally invariant Hamiltonian
nearest neighbor chain, which is then generalized to any symmetric localized defects. The implications for
discrete breathers are also discus$8d063-651X%97)50811-7

PACS numbsg(s): 03.20:+i, 63.20.Pw, 63.20.Ry

Recently, there has been an upsurge of research activitié® perturbatively analyzed for a wide range of potentials
on localized dynamics on nonlinear lattices, in particular, forwith the help of a natural tuning parameter. However, it can
a class of spatially discrete, nonintegrable, translationally inbe naturally extended to any localized objects that are sym-
variant systems on latticgd]. It has been shown that in metric under spatial reflection and a DB with time-periodic
suitable circumstances they have spatially localized timedynamics by considering truncation of Fourier modes.
periodic solutions, known as “discrete breathéB)” [2], Consider a Hamiltonian for the translationally invariant,
the discrete analogue of breathers in continuous systems. discrete Klein-Gordon chain with one degree-of-freedom per

Recently it was numerically founfB] that some of the site and nearest neighbor coupling
Floquet modes of the linearized problem about a discrete
breather are also spatially localized, which doealized 1.,
modes on localized modésMs). The spectral study of the H0=2 PXnt V(X)) +eU(Xn 1= Xn) |, (1)

LMs and their creation thresholds provides a systematic way "

to study some important aspects of DB dynamics such as .
quasi-periodiclike dynamics after finite energy perturbation herey has atzleast two nondege?erate local minimga,
to a DB[4,5], and the pinning mode and movability of a DB With V*(x,) = w>0, andu’(0)=1,u"(0)=1. For example,
[6], etc. we takeu(x)=3x2 and study either thep* Klein-Gordon

In this Rapid Communication, we study consequences ofnodel with the double well potentialy(x)=x*4—x?/2,
LMs for the scattering of phonons tliscretelocalized ob-  with minima atx, = =1, or the sine-Gordon model with the
jects by focusing on a simpler problem of a stationary defectosine potentialV(x)=1—cos§), with minima x, =2mn,
and discussing its implications for DB scattering. We showwheren is an integer.
that the existence of the thresholds for creation of LMs is We start with a stationary solution of
manifested in the phonon scattering with localized objects as
a perfecttransmission ak=0 at the LM thresholds and a
dramatic change from a ‘“reflecting” state to a perfectly
transmitting state for long-wavelength phonons as the thresh- o ) ]
old is crossed. The DB-phonon scattering has been preth'Ch is translapon invariant except for a localized d_efc_ect,
ously studied numerically to yield strong wave-vector depenfor example, discrete) kinkdefined in the uncoupled limit
dence[4] and the existence of perfect transmissipl, (6=0) by Xp=-1(n=<0),x,=+1(n=1) for the double
which together with our results provides strong implicationswell potential andx,=27n(n<0)x,=2m(n+1)(n=1)
for heat flux in long molecules, for example, a mechanisnfor the cosine potential. By the implicit function theorem,
for energy trapping between two localized objects or prevensuch an equilibrium has a unique continuatige) for small
tion of the heat flux penetration into certain areas of thee. called alocalized equilibrium (LE)which is exponentially
chain[4,8]. The theory is illustrated with numerics for local- localized in space.
ized equilibria on a translationally invariant nearest neighbor The linearized equation around the LE is given by
chain with a(discrete kink in the uncoupled limit, where
properties of LMs and their consequences for scattering can  #=_| ¢ (L&), =A & —e(Eni1—2E+En 1), (3

5.(n—+_VI()(n):S[Xn+1_2Xn+xn—l]u (2

whereA,=V"(x,) is time independent. Among eigenmodes
of L we are interested in localized modes of the form
%n=)\“e'“" (IN|<1) with a frequencyw and a decay expo-
nent\ satisfying

*Permanent address: Nonlinear and Complex Systems Labor
tory, Dept. of Physics and Dept. of Mathematics, Postech, Pohan
Korea 790-784. Electronic address: swan@vision.postech.ac.kr

'On leave from Center de Dynamique des Symte Complexes,

Laboratoire de Physique, Universitee Bourgogne, 21004 Dijon, ’ )
France. wg—w =e(N—2+1/\). (4)

1063-651X/97/565)/49554)/$10.00 56 R4955 © 1997 The American Physical Society



RAPID COMMUNICATIONS

R4956 S. KIM, C. BAESENS,

The frequency of the LM, which lies outside the phonon

band, is determined by a matching condition for a bounded

solution.

In the case of the kink, perturbative calculations for equi-

libria for smalle show thatxy andx; move byO(e) and the
rest by at mosO(&?) with an exponential decay 48| — .
Therefore, the simplest LM is given by ddealized kink a
first order approximation of the kink without exponential
tails; A,= 035(n#0,1), andA;=A,= 05— Ke, whereK>0
is called thedetuning parametefThe frequencies and decay

exponents for the symmetric and asymmetric modes are

given by[9]
K2 1
2_ 2 _
(K—2)2 1
A S

For localization,|\s 5| <1, which gives two thresholds for
creation of LMs out of the bottom edge of the phonon band
K =0 for the symmetric LM andk =2 for the antisymmetric
LM. Therefore, if 0sK=<2, there is a symmetric LM and no
antisymmetric LM. FoiK>2, there exists both a symmetric
LM and an antisymmetric LM. Similarly foK<<0, we get
LMs emerging from the top edge of the phonon band.
For a kink for the double well potentiaK~6+O(e),

and, therefore, both a symmetric and an antisymmetric L

exist in the uncoupled limit. These LMs persist under con-

tinuation for the full problem since the correction to the
spectrum is at mogD(&2), which is confirmed by numerical
continuation of the spectrum df in ¢. In the case of the
cosine potential, howevely”’=0 at the potential minima
andK~2m2¢, and, therefore, for sma#l only a symmetric
LM exists, which also persists for the full problem. The fact
thatK ~ ¢ for the cosine potential allows a natural control of
the detuning parameter by tuning the coupling strength

Numerical calculations of the spectrum for the cosine poten-
tial chain with 64 sites in fact shows that an antisymmetric

LM is created at a critical value af~0.26-0.27, far away
from the perturbative regime.

The existence of creation thresholds for LMs leads to sig
nificant consequences for scattering properties of phonon

Consider a scattering setup with a phonon incident on a sta o
Jdyansmitting

tionary localized object. Suppose that asymptotic solutions
either end of the chain are of the form

(6)

wheret andr are transmission and reflection amplitudes,

§n~nﬂ,me'k”+re"k“, fn’vnﬁmtelkn,
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FIG. 1. Transmission coefficient as a functiorkdbr a kink for
the double well potential and the cosine potential with 0.01.
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Where E,=(A,— 0w?)/e =2 cok—K, and detuning param-
etersKn=(wS—An)/s. Note that unles® =0, 7 vanishes
guadratically ink in the limit k— 0,7, as in the case of one
static diagonal defe¢tL1]. The numerical implementation of
our scheme for a finite chain involves only determination of
the LE by Newton-Raphson method and repeated matrix

Mnultiplications that can be performed very fast and effi-

ciently.

As the simplest example, consider scattering of phonons
by an idealized kink, wher€eq=E;=E=2co%k—K and
Enz01=2 cok. Then we get

D(k)=D(k)
=(K—2 cok)?(2 sirfk+K cok)?
+[(2 cok—K)2—2]%sir’k. (10)

A simple calculation yields that the maximum @ffor a
double well potential wittK~6 is about 0.0035, so that the

kink is almost opaque to phonons for the entire rangie fofr

a double well potential. On the other hand, for the cosine
potential withK~e, a straighforward perturbative estimate

shows that in the uncoupled limit the kink is almost perfectly
(1—7{<e) for phonons except in the small

neighborhood ok= 0,7 of size \e, which is confirmed by

numerical computation of transmission coefficients as a

function ofk, as in Fig. 1 for a kinkwith exponential tails

of the double well potential and the cosine potential with

£=0.01.

respectively. Then after some algebra with transfer matrices WhenD (k) is zero, there is a possibility of nonzero trans-

[10], we get
T=|t|?=4 sirtk/D(k), (7)
where
D (K)=[ (M1~ M) Cok+ My~ M)
+(Myg+ Myp)?sirek. €)
Here M, ;, i,j=1,2 are matrix elements of

mission atk=0 or k=. We consider th&=0 limit only
since the other case witt= 7+ can be analyzed similarly for
LMs on the top of the phonon bands. For an idealized kink
Dk(k) vanishes atk=0 and K=2, which are, in fact,
thresholds for creation of symmetric and antisymmetric
LMs, respectively. Moreover, simple algebra shows that at
the thresholdK=2 the transmission d&=0 becomeger-
fect a dramatic deviation from typical scattering behaviors
of static diagonal defects. Moreover Kf<2 there exists a
perfect transmissionZ=1) at kp=cos‘1(K/2) and ifK>2
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FIG. 2. Characteristic change in transmission near the LM

threshold for a kink for the cosine potential.

there is no perfect transmission but

£~0.26-0.27 as in Fig. 2.

Our approach is very general and can be extended to t
neighborhood of any LM threshold of any localized defects
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FIG. 3. Transmission coefficient as a functionkdr a discrete
breather of a Klein-Gordon chain with double well potential for

a maximuMyarious values of.
Tmax=4[4+ (K2—4)K?] at k,=cos *(2/K), which de-
creases from 1 aK moves away from the threshold. This
characteristic change in transmission near the LM threshol
is in fact observed for a kinkwith exponential tailsfor the
cosine potential near the antisymmetric LM threshold of

§1=[((92/&k2) (M= Moot M= M) = Myslk=o (c#0
general. If c6<0, there is a perfect transmission at
kp,~+— d/c. Note that the breaking of spatial symmetry in
localized objects leads to nonperfect transmissiogstft0,

nye solve for the maximum transmission and obtain a peak in

transmission ak,~ v é/c with a maximumZ,_,_~1—|c|é.

which issymmetriaunder spatial reflection. First, a necessaryFor an idealized kink near the antisymmetric LM threshold,

condition for nonzero transmission lat=0 is thatD(0)=0,

which leads to

O=[My1— Mozt Myp= Myilk=0=0.

K=2, c~—-2<0 and §~2(K—2), which leads to predic-
tions consistent with previous analysis of the idealized kink
and numerical computations for a kink.

We emphasize that thresholding behavior of LMs has also
been found in a DB for a one-dimensional nearest neighbor

At the LM thresholds, the band-edge solution at the bottonthain with the double well potential, for example, with a
of the phonon bandt2= &,(k=0), with boundary condition frequencyw,= 0.8, [9], where in the uncoupled limit no

&_\=1 for some largeN is given by £2=aon+ B, for

LMs exist and a symmetric LM and an asymmetric LM are

n<N. This band-edge solution must be bounded, so that thereated at finite couplingss~0.07 ande,~0.1, respec-
slope ap= g‘iN— §9N71= 8 must vanish. Therefore only at tively. Our analysis of scattering can be naturally extended to

the LM threshold, we get nonzero transmissiork&t0.
In fact, at the threshold, the transmissiorkatO becomes

the DB with time-periodic functions with an appropriate en-
largement of the dimension of transfer matrices to account

perfectand we get the characteristic change in transmissiofor truncated Fourier modes. Preliminary numerical evidence
discussed before for a kink. For localized objects with symfor a DB with w,=0.80¢ shows that in the case of elastic

metry under spatial reflection\1 is antisymmetric, that is,
M+ My=0. This together with det=1 vyields after
some algebra a simplified form f&f for the symmetric lo-

calized objects:
- 1
~1+F(k)’
where

(M= Mop+ 2 M3 £0K)?

Fk)= 4 sirtk

We getperfecttransmission wheiir (k) =0; that is, if

My1— Moot 2 M4,0Kk=0

has a solution fok. Note that the parametet in Eq. (11)
measures deviation from the LM threshold. Sidletis even
in k, for smallk and 6 Eq. (14) becomess+ ck?~0, where

scattering the DB is almost opaque for weak coupling but its
transmission is dramatically enhanced near the LM thresh-
olds showing a characteristic change in transmission similar
to the case of the LEsee Fig. 3. This explains why perfect
transmission of phonons through a DB was observed for a
very small wave vector forw,=0.8323 ande=0.1 by
Cretegnyet al. [7].

In conclusion, we have studied thresholds of LMs for a
class of symmetric localized defects, in particular, a discrete
kink on a Klein-Gordon chain and their connection with pho-
non scattering. We found that the transmissiorkat0 be-
comes perfect at the LM threshold with characteristic change
involving perfect transmission for long-wavelength phonons
in the neighborhood of the threshold. The explicit connection
between creation thresholds for LMs and phonon scattering
provides ways to investigate properties of LMs through scat-
tering experiments. For example, by studying the phase
shifts inZ, the total number of LMs could be enumerated as
in Levinson’s theorenj7,12,13. It would be interesting to
solve inelastic scattering problems in connection
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with experiments on LMs. The results on phonon-scatteringeriodic DBs and their connection to DB-phonon scattering
may also present clues to understand and control heat flux iwith in the discrete nonlinear Schtimger equation on one-
|0ng molecules, for examp|e' energy trapping and heat perdimension and the Fermi—Pasta—UI{:lm chain. The detailed
etration prevention into some areas of chid]. analysis of DB-phonon scattering will be the subject of on-
Our approach can be extended to a wide class of localize80IN9 Investigations.
defects, static or time periodic, on a chain. Much of our we would like to thank S. Flach and S. Aubry for stimu-
results on scattering is expected to hold for a broad class ghting discussions. S.K. acknowledges financial support from
Hamiltonian chains outside the realm of applications of thethe EPSRC, the Korea Science and Engineering Foundation,
transfer matrix method and the discrete Sturm-Liouvilleand the Basic Science Research Institute Program by Minis-
theory. It would be interesting to understand LMs of time-try of Education through Project No. BSRI-96-2438.
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